2019 中国科学院,王宽诚率先人才计划“卢嘉锡国际团队项目”国外专家团队成员
2016伯克利实验室年度科研Spot奖
研究领域:
l智慧城市低碳能源系统
l分布式综合能源微网系统
l零碳建筑与能源系统
l中长期碳排放建模与战略研究
附件:
代表性论文:
1.Fei Yu, Wei Feng, Maohui Luo, Minda Ma, Kairui You, Liqun Sun, Rui Jiang, Jiawei Leng.Techno-economic analysis of residential building heating strategies,perspectives on cost-effective upgrades in European cities. 2023. iScience (Accepted)
2.Clara Camarasa, Érika Mata, Juan Pablo Jiménez Navarro, Janet Reyna, Paula Bezerra, Gerd Brantes Angelkorte, Wei Feng, Faidra Filippidou, Sebastian Forthuber, Chioke Harris, Nina, Holck Sandberg, Sotiria Ignatiadou, Lukas Kranzl, Jared Langevin, Xu Liu, Andreas Müller, Rafael Soria, Daniel Villamar, Gabriela Prata Dias, Joel Wanemark, Katarina Yaramenka. Global buildings’ decarbonization 2050: A cross-country comparison of modelling scenarios towards 1.5 and 2 °C targets. Natural Communication.
3.N Zhou, N Khanna, W Feng, J Ke, M Levine. Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050.Nature Energy, volume 3, pages978–984 (2018)
4.Y Su, L Wang, W Feng, N Zhou, L Wang. Analysis of green building performance in cold coastal climates: An indepth evaluation of green buildings in Dalian, China.
Renewable and Sustainable Energy Reviews 146, 111149. https://doi.org/10.1016/j.rser.2021.111149
5.R Wang, S Lu, W Feng, B Xu. Tradeoff between heating energy demand in winter and indoor overheating risk in summer constrained by building standards. Building Simulation 14 (4), 987-1003. https://doi.org/10.1007/s12273- 020-0719-x
6.Q Chen, N Li, W Feng*. Model predictive control optimization for rapid response and energy efficiency based on he state-space model of a radiant floor heating system. Energy and Buildings 238, 110832. https://doi.org/10.1016/j.enbuild.2021.110832
7.R Wang, W Feng*, L Wang, S Lu. A comprehensive evaluation of zero energy buildings in cold regions: Actual performance and key technologies of cases from
China, the US, and the European Union. Energy 215, 118992. https://doi.org/10.1016/j.energy.2020.118992
8.DL Gerber, F Musavi, OA Ghatpande, SM Frank, J Poon, RE Brown, et. al. A Comprehensive Loss Model and Comparison of AC and DC Boost Converters.Energies 14 (11), 3131. https://doi.org/10.3390/en14113131
9.H Ai, M Guan, W Feng, K Li.Influence of classified coal consumption on PM2. 5 pollution: Analysis based on the panel cointegration and error-correction model. Energy 215, 119108. https://doi.org/10.1016/j.energy.2020.119108
10.S Zhang, W Xu, K Wang, W Feng, A Athienitis, G Hua, M Okumiya, G Yoon, et. al. Scenarios of energy reduction potential of zero energy building promotion in the Asia-Pacific region to year 2050. Energy 213, 118792.
https://doi.org/10.1016/j.energy.2020.118792
11.X Dai, Y Li, K Zhang, W Feng*. A robust offering strategy for wind producers considering uncertainties of demand response and wind power. Applied Energy 279, 115742. https://doi.org/10.1016/j.apenergy.2020.115742
12.X Wang, H Tian, F Yan, W Feng, R Wang, J Pan. Optimization of a distributed energy system with multiple waste heat sources and heat storage of different temperatures based on the energy quality. Applied Thermal Engineering 181, 115975. https://doi.org/10.1016/j.applthermaleng.2020.115975
13.R Wang, S Lu, W Feng, X Zhai, X Li. Sustainable framework for buildings in cold regions of China considering life cycle cost and environmental impact as well as thermal comfort. Energy Reports 6, 3036-3050.
https://doi.org/10.1016/j.egyr.2020.10.023
14.C Lin, Y Gao, J Huang, D Shi, W Feng, Q Liu, X Du. A novel numerical model for investigating macro factors influencing building energy consumption intensity. Sustainable Production and Consumption 24, 308-323.
https://doi.org/10.1016/j.spc.2020.07.014
15.W Zhu, W Feng*, X Li, Z Zhang. Analysis of the embodied carbon dioxide in the building sector: A case of China Journal of Cleaner Production, 122438. https://doi.org/10.1016/j.jclepro.2020.122438